Рассмотрим два следствия из 2-го замечательного предела, с помощью которых можно найти предел показательной функции, в том числе, предел экспоненты.
Эти формулы можно применять и для случаев, когда на месте x стоит f(x), при условии, что при x→0, f(x)→0:
Проиллюстрируем, как найти предел показательной функции, в частности, предел экспоненты, на примерах.
Найти предел функции:
Сокращаем дробь на x. Получаем в числителе выражение вида (Ia), а значит, можем применить это следствие из 2-го замечательного предела:
Здесь мы вычли и прибавили единицу, поэтому в итоге значение выражения, стоящего в числителе, не изменилось.
Выносим общий множитель x за скобки и сокращаем на него:
В числителе получили выражения вида (Ia) и (IIа)
В числителе — выражение вида (Ia), в знаменателе — 1й замечательный предел: