Сложная функция — это функция от функции. Если u — функция от x, то есть u=u(x), а f — функция от u: f=f(u), то функция y=f(u) — сложная.
А u в этом случае называют промежуточным аргументом. Еще часто f называют внешней функцией, а u — внутренней. Лучший способ понять, что такое сложная функция — рассмотреть примеры сложных функций.
1) y=sin x — эта функция «простая». Синус зависит от x. Как только вместо x под знаком синуса появится выражение, зависящее от x, даже самое простое — такая функция называется сложной. То есть y=sin u — сложная функция, если u — некоторая функция от x. Примеры сложных функций с синусом:
y=sin (x+1). Эта функция — сложная. Внутренняя функция u здесь равна x+1, а внешняя функция f — это синус. То есть u=x+1, f=sin u.
y=sin (5x-2x³+3). Внутренняя функция u=5x-2x³+3, внешняя функция f=sin u.
y=sin (x/7). Внутренняя функция u=x/7, внешняя функция f=sin u.
2) y=cos x — «простая» функция. y=cos u — сложная функция, если u — некоторая функция, зависящая от x. Примеры сложных функций с внешней функцией — косинусом:
y=cos (4-11x). Внутренняя функция u=4-11x, внешняя функция — косинус: y=cos u.
y=cos (7x³ -4x²). Внутренняя функция u=7x³ -4x², внешняя — y=cos u.
3) y=tg x — «простая» функция. y = tg u — сложная функция, если u=u(x). Примеры сложных функций для случаев, когда внешняя функция — тангенс:
y=tg(17+5x²). Внутренняя функция u=17+5x², внешняя — y=tg u.
y=tg(9-x). Внутренняя u=9-x, внешняя — y=tg u.
4) y=ctg x — «простая» функция. y=ctg u — сложная функция, если u=u(x). Примеры сложных функций для случаев, когда внешняя функция — котангенс:
y=ctg(2x+6). Внутренняя функция u=2x+6, внешняя — y=ctg u.
y=ctg(√x). u=√x, f=ctg u.
5) y=√x — «простая» функция. y=√u — сложная, если u=u(x). Примеры сложных функций для случаев, когда внешняя функция — квадратный корень:
Здесь внутренняя функция y=sin x, а внешняя — f=√u.
Здесь u=9x³-12x+5, f=√u.
6) y=xⁿ — «простая» функция. y=uⁿ — сложная, если u=u(x). Примеры сложных функция для случая, когда внешняя функция — степенная.
y=sin³x. Внутренняя функция y=sin x (так как sin³x=(sin x)³), внешняя — у=u³.
7) y=arcsin x — «простая» функция. y=arcsin u — сложная, когда u=u(x).
Например, y=arcsin (3x-9) — сложная функция. Внутренняя функция u=3x-9, внешняя — f=arcsin u.
y=arcsin (17-5x³). u=17-5x³, f=arcsin u.
8) y=arccos x — «простая» функция. y=arccos u — сложная, при u=u(x).
Например, y=arccos (34x+5) — сложная функция. Внутренняя функция u=34x+5, внешняя — f=arccos u.
9) y=arctg x — «простая» функция. y=arctg u — сложная, при u=u(x).
Например, y= arctg (6x+2x³-7). Внутренняя функция u =6x+2x³-7, внешняя — f=arctg u.
10) y=arcctg x — «простая функция. При u=u(x) функция y=arcctg u — сложная.
Например, y= arcctg(2-11x+x²) — сложная функция. u=2-11x+x², f= arcctg u.
11) y=ln x — «простая» функция. y= ln u — сложная, при u=u(x).
Например, y=ln(4+32x-2x³). Внутренняя функция y=4+32x-2x³, внешняя — f=ln u.
Это — «простая» функция. А вот при u=u(x) получаем логарифм сложной функции:
Например,
Эта функция — «простая» (называется экспонента). А вот если в показателе стоит не x, а некоторая функция от икса: u=u(x), то это — уже экспонента сложной функции:
Например,
Эта функция — «простая». А вот если в показателе стоит не x, а некоторое выражение с x — функция u=u(x), то это уже степень сложной функции:
Например,
Эта функция — сложная. Внутренняя функция u=8x³+5x, а внешняя — степень сложной функции
Следует добавить, что внутренняя функция u, в свою очередь, может быть сложной функцией. И таких «вложенных» функций может быть несколько (теоретически — сколько угодно).
Например,
1) y=cos³(3x-12). Здесь внутренняя функция u =cos(3x-12), а внешняя функция f=u³. Но внутренняя функция y=cos(3x-12), в свою очередь, тоже является сложной функцией. Для нее внутренняя функция u=3x-12, а внешняя f=cos x.
Сначала рассмотрим эту функцию, как логарифм сложной функции. Тогда внутренняя функция
внешняя — логарифм:
В свою очередь, функция
— тоже сложная. Это — синус сложной функции, то есть
Но u — снова сложная функция. Здесь уже внутренняя функция u=2x²+5x, а внешняя f=√u.