Комплексная плоскость — это плоскость с прямоугольной декартовой системой координат xOy.
Комплексные числа на этой плоскости изображаются в виде точек либо в виде векторов.
I. Геометрическая интерпретация комплексных чисел в виде точек на комплексной плоскости
Каждому комплексному числу z=a+bi на комплексной плоскости соответствует точка z(a;b).
И наоборот, каждую точку z(a;b) плоскости можно считать изображением комплексного числа z=a+bi.
Таким образом, геометрическое изображение комплексных чисел в виде точек координатной плоскости устанавливает взаимно однозначное соответствие между комплексными числами и точками плоскости.
Действительные числа z=a+0i на комплексной плоскости изображаются точками с координатами (a;0) (лежащими на оси Ox), чисто мнимые числа z=0+bi — точками с координатами (0;b) (на оси Oy).
Поэтому ось абсцисс Ox называют действительной осью, а ось ординат Oy — мнимой осью.
Комплексно-сопряженные числа на плоскости изображаются точками, симметричными относительно оси Ox; противоположные комплексные числа — точками, симметричными относительно точки O (начала координат).
Например,
Комплексную плоскость называют также плоскостью Гаусса.
Геометрическая интерпретация комплексных чисел в виде радиус-векторов
Комплексные числа изображаются также векторами с началом в точке O и концом в точке z(a:b) (радиус-векторами).
Соответствие между комплексными числами и радиус-векторами также является взаимно однозначным.
Например,
Геометрически сумма комплексных чисел в виде радиус-векторов строятся по правилу параллелограмма сложения векторов.
Геометрически комплексные числа также можно вычитать, как векторы.
На комплексной плоскости удобно изображать различные множества комплексных чисел, удовлетворяющие заданным условиям.