Метод вариации произвольной постоянной, или метод Лагранжа — еще один способ решения линейных дифференциальных уравнений первого порядка и уравнения Бернулли.
Линейные дифференциальные уравнения первого порядка — это уравнения вида y’+p(x)y=q(x). Если в правой части стоит нуль: y’+p(x)y=0, то это — линейное однородное уравнение 1го порядка. Соответственно, уравнение с ненулевой правой частью, y’+p(x)y=q(x), — неоднородное линейное уравнение 1го порядка.
Метод вариации произвольной постоянной (метод Лагранжа) состоит в следующем:
1) Ищем общее решение однородного уравнения y’+p(x)y=0: y=y*.
2) В общем решении С считаем не константой, а функцией от икса: С=С(x). Находим производную общего решения (y*)’ и в первоначальное условие подставляем полученное выражение для y* и (y*)’. Из полученного уравнения находим функцию С(x).
3) В общее решение однородного уравнения вместо С подставляем найденное выражение С(x).
Рассмотрим примеры на метод вариации произвольной постоянной. Возьмем те же задания, что и в примерах решения линейных дифференциальных уравнений методом Бернулли, сравним ход решения и убедимся, что полученные ответы совпадают.
1) y’=3x-y/x
Перепишем уравнение в стандартном виде (в отличие от метода Бернулли, где форма записи нам нужна была только для того, чтобы увидеть, что уравнение — линейное).
y’+y/x=3x (I). Теперь действуем по плану.
1) Решаем однородное уравнение y’+y/x=0. Это уравнение с разделяющимися переменными. Представляем y’=dy/dx, подставляем: dy/dx+y/x=0, dy/dx=-y/x. Обе части уравнения умножаем на dx и делим на xy≠0: dy/y=-dx/x. Интегрируем:
2) В полученном общем решении однородного уравнения будем считать С не константой, а функцией от x: С=С(x). Отсюда
Полученные выражения подставляем в условие (I):
Интегрируем обе части уравнения:
здесь С — уже некоторая новая константа.
3) В общее решение однородного уравнения y=C/x, где мы считали С=С(x), то есть y=C(x)/x, вместо С(x) подставляем найденное выражение x³+C: y=(x³+C)/x или y=x²+C/x. Получили такой же ответ, как и при решении методом Бернулли.
Ответ: y=x²+C/x.
2) y’+y=cosx.
Здесь уравнение уже записано в стандартном виде, преобразовывать не надо.
1) Решаем однородное линейное уравнение y’+y=0: dy/dx=-y; dy/y=-dx. Интегрируем:
Чтобы получить более удобную форму записи, экспоненту в степени С примем за новую С:
Это преобразование выполнили, чтобы удобнее было находить производную.
2) В полученном общем решении линейного однородного уравнения считаем С не константой, а функцией от x: С=С(x). При этом условии
Полученные выражения y и y’ подставляем в условие:
Умножим обе части уравнения на
Интегрируем обе части уравнения по формуле интегрирования по частям, получаем:
Здесь С уже не функция, а обычная константа.
3) В общее решение однородного уравнения
подставляем найденную функцию С(x):
Получили такой же ответ, как и при решении методом Бернулли.
Ответ:
Метод вариации произвольной постоянной применим и для решения уравнений Бернулли.
y’x+y=-xy².
Приводим уравнение к стандартному виду: y’+y/x=-y² (II).
1) Решаем однородное уравнение y’+y/x=0. dy/dx=-y/x. Умножаем обе части уравнения на dx и делим на y: dy/y=-dx/x. Теперь интегрируем:
2) В полученном общем решении будем считать С не константой, а некоторой функций от x. При этом условии
Подставляем полученные выражения в условие (II):
Упрощаем:
Получили уравнение с разделяющимися переменными относительно С и x:
Здесь С — уже обычная константа. В процессе интегрирования писали вместо С(x) просто С, чтобы не перегружать запись. А в конце вернулись к С(x), чтобы не путать С(x) с новой С.
3) В общее решение однородного уравнения y=C(x)/x подставляем найденную функцию С(x):
Получили такой же ответ, что и при решении способом Бернулли.
Ответ:
Примеры для самопроверки:
1. y’=x+2y
спасибо большооое, очень все понятно, мне хорошо помогло:)
Спасибо большое за теплые слова! Удачи Вам в дальнейшем изучении математики!
Спасибо, очень доходчиво, пропустила лекцию и разобралась 🙂
Пожалуйста!